Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction.

نویسندگان

  • R S Hewes
  • E C Snowdeal
  • M Saitoe
  • P H Taghert
چکیده

The Drosophila FMRFamide gene encodes multiple FMRFamide-related peptides. These peptides are expressed by neurosecretory cells and may be released into the blood to act as neurohormones. We analyzed the effects of eight of these peptides on nerve-stimulated contraction (twitch tension) of Drosophila larval body-wall muscles. Seven of the peptides strongly enhanced twitch tension, and one of the peptides was inactive. Their targets were distributed widely throughout the somatic musculature. The effects of one peptide, DPKQDFMRFamide, were unchanged after the onset of metamorphosis. The seven active peptides showed similar dose-response curves. Each had a threshold concentration near 1 nM, and the EC50 for each peptide was approximately 40 nM. At concentrations <0.1 microM, the responses to each of the seven excitatory peptides followed a time course that matched the fluctuations of the peptide concentration in the bath. At higher concentrations, twitch tension remained elevated for 5-10 min or more after wash-out of the peptide. When the peptides were presented as mixtures predicted by their stoichiometric ratios in the dFMRFamide propeptide, the effects were additive, and there were no detectable higher-order interactions among them. One peptide was tested and found to enhance synaptic transmission. At 0.1 microM, DPKQDFMRFamide increased the amplitude of the excitatory junctional current to 151% of baseline within 3 min. Together, these results indicate that the products of the Drosophila FMRFamide gene function as neurohormones to modulate the strength of contraction at the larval neuromuscular junction. In this role these seven peptides appear to be functionally redundant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrograde Gbb signaling through the Bmp type 2 receptor wishful thinking regulates systemic FMRFa expression in Drosophila.

Amidated neuropeptides of the FMRFamide class regulate numerous physiological processes including synaptic efficacy at the Drosophila neuromuscular junction (NMJ). We demonstrate here that mutations in wishful thinking (wit) a gene encoding a Drosophila Bmp type 2 receptor that is required for proper neurotransmitter release at the neuromuscular junction, also eliminates expression of FMRFa in ...

متن کامل

Molecular cloning and functional expression of the first insect FMRFamide receptor.

FMRFamide and FMRFamide-related neuropeptides are extremely widespread and abundant in invertebrates and have numerous important functions. Here, we have cloned a Drosophila orphan receptor, and stably expressed it in Chinese hamster ovary cells. Screening of a peptide library revealed that the receptor reacted with high affinity to FMRFamide (EC50, 6 x 10(-9) M). The intrinsic Drosophila FMRFa...

متن کامل

Expression of Multiple Transgenes from a Single Construct Using Viral 2A Peptides in Drosophila

Expression of multiple reporter or effector transgenes in the same cell from a single construct is increasingly necessary in various experimental paradigms. The discovery of short, virus-derived peptide sequences that mediate a ribosome-skipping event enables generation of multiple separate peptide products from one mRNA. Here we describe methods and vectors to facilitate easy production of pol...

متن کامل

Peptidergic regulation of chromatophore function in the European cuttlefish Sepia officinalis

Color patterning in cephalopod molluscs involves activation of a peripheral chromatophore system that is under neuromuscular control. The complex behavior of individual chromatophores is mediated by a specific set of muscles, the chromatophore muscles, that receive direct innervation from the central nervous system. To date, glutamate is the only excitatory transmitter that has been proposed to...

متن کامل

Regulation of Drosophila FMRFamide neuropeptide gene expression.

Physiologically important peptides are often encoded in precursors that contain several gene products; thus, regulation of expression of polypeptide proteins is crucial to transduction pathways. Differential processing of precursors by cell- or tissue-specific proteolytic enzymes can yield messengers with diverse distributions and dissimilar activities. FMRFamide-related peptides (FaRPs) are pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 18  شماره 

صفحات  -

تاریخ انتشار 1998